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Abstract—A high intensity dual beam X-ray system was designed and constructed to make chordal-average
void fraction measurements. This X-ray system employed a DC excited tube filament, full wave
rectification and high voltage filtering to produce a stable photon source. The large photon flux produced by
the X-ray system allowed analog linearization of the signal.

A series of chordal-average void fraction measurements were made and used to generate probability
density functions (PDF) and power spectral density (PSD) functions. The first four moments associated
with these distributions were studied as possible flow regime indicators.

The moments of the PDF indicated the various flow regime transitions. The moments of the PSD also
show some flow regime transition information, but were sensitive to liquid phase velocity. The PDF
variance, or second moment about the mean, was found to be the best indicator of flow regime. A variance
of 0.04 appear to adequately discriminate between the bubbly, slug and annular flow regimes for low
pressure air/water flow in a 2.54 cm 1.D. vertical tube.

1. INTRODUCTION

1.1 Background
Vertical two-phase flow is normally classified into four basic flow regimes: (1) bubbly; (2) slug;
(3) churn-turbulent; (4) annular. These flow regimes are shown schematically in figure 1.

Bubbly flow is characterized by small, discrete bubbles surrounded by liquid. This flow
regime usually occurs at low void fraction.

Slug flow consists of slugs of liquid and bubbles separated by regions of high vapor content.
The vapor phase normally appears as large, spherical-capped bubbles, followed by a collection
of much smaller voids, in bubbly form. At the lower flow rates, this flow regime represents an
intermediate stage between bubbly and annular flow.

Churn-turbulent flow is a special case which normally occurs at high flow rates, and is
characterized by chaotic motion between the phases. This flow regime can be considered to be
an intermediate stage between the bubbly and annular flow regimes at high flow rates. Liquid
bridging, a characteristic of slug flows, is still observed, however it is quite intermittent.

Annular flow occurs at high void fractions and is characterized by a central vapor core
surrounded by an annulus of liquid. Liquid phase entrainment (i.e. droplets moving in the vapor
core) is also frequently observed. Roll waves may move along the interface, however the liquid
bridging, observed in slug flow, does not exist.

Flow regime maps represent a convenient way to indicate the phase distribution of a
two-phase mixture. Flow regime boundaries can be indicated on a plot of parameters commonly
measured or calculated.

One of the first vertical flow regime maps was proposed by Govier et al. (1957, 1958). They
investigated the effects of pipe diameter and air/water flow rates on flow pattern, void fraction
and pressure drop. It was found that a change in pressure drop accompanies a change of flow
regime. Thus Govier et al. (1957, 1958) correlated the superficial water velocity and the
air-to-water volumetric flux ratio. Their results are based on the premise tht the flow regime
transitions occur at inflection points of the void fraction curves and at minimums in the
pressure drop curves.

Griffith & Wallis (1961) proposed a flow regime map for vertical fully-developed slug flow. A
plot of the relative gas flow rate vs the mixture Froude number results in a curve separating
annular and bubbly flow from fully developed slug flow.
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Figure 1. The four flow regimes observed in vertical two-phase flow.

Hubbard & Dukler (1966) measured the pressure fluctuations at the wall of a horizontal pipe,
containing various two-phase mixtures. The time response of the pressure transducer was
digitized and the power spectral density (PSD) function was computed from the autocor-
relation. The resulting power spectrum was then classified into three broad categories. The
various flow regimes were categorized by considering their energy distribution. It appears that
this work represented the first attempt at objective classification of flow regimes, although
related work has been performed by Nishikawa et al. (1969) and Kutateladze et al. (1972).

Taitel ef al. (1980) developed pseudo-analytical models for predicting flow regime transitions
in vertical flow. These models are based on the physical mechanisms associated with each
transition. The effects of fluid properties and pipe size were also considered. It should be noted
that the Taitel-Dukler flow regime map assumes that the bubbly-slug flow regime transition
occurs at constant global void fraction while the slug-annular flow regime transition takes place
at a constant superficial vapor velocity, independent of the superficial liquid velocity and pipe
diameter.

The first photon attenuation technique used for flow regime identification was apparently
developed by Jones & Zuber (1975). This system utilized a dual beam X-ray device. Air and
water, flowing vertically in a two-dimensional test section, were used to achieve the two-phase
conditions. The probability density function (PDF) and the power spectral density (PSD)
function were formed from the digitized data set collected. Jones & Zuber observed that bubbly
flow was characterized by a single, low void, peak in the PDF. Slug flow had a bimodal PDF; the
low void mode corresponding to the vapor in the liquid slug and the high void peak corresponding to
the spherical-capped Taylor bubbles. Annular flow displayed a single peak, similar to bubbly flow,
but at high void fraction. Jones & Zuber did not attempt to deduce an objective flow regime trans-

tion from his data.

1.2 Flow regime characterization

The statistical content of a stochastic process frequently yields valuable information about
the nature of the process. Indeed, Pattern Recognition Theory (Caulfield et al. 1980 and Young
& Calvert 1974) is based on using various measures of the statistical process to infer
information of interest. In particular, it is known that the moments of the various density
function histograms completely quantify the information in the histograms.
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Four moments are commonly associated with any distribution: (1) The mean, or first
moment about the origin. (2) The variance, or second moment about the mean. (3) The
skewness, or third moment about the mean. (4) The kurtosis, or fourth moment about the mean.
The mean is the average value of a distribution. Variance is a measure of the distribution about
the mean.

The third moment, skewness, is a measure of the asymmetry of a distribution. A symmetric
distribution, such as a normal distribution, has zero skewness since the mean and the median
coincide. A unimodal distribution, which has a median to the left of the mean, (i.e. it is skewed to
the left) has a negative skewness. If the distribution is skewed to the right, it will have a positive
skewness. This moment is usually normalized by the variance to the 1.5 power. The resulting value
is called the coefficient of skewness, and relates the skewness to the spread of the distribution.

Kurtosis, the fourth moment, is a measure of the distribution’s peakedness. Similar to the
skewness, this moment is often normalized by the square of the variance. The resultant
parameter is called the coefficient of kurtosis. The normal distribution is mesokurtic (i.e. it has a
coefficient of kurtosis equal to three). A distribution with a coefficient of kurtosis less than three is
called platykurtic. These distributions are flatter than a normal distribution. Distributions with
more peakedness than a normal distribution are called leptokurtic, and have a coefficient of
kurtosis greater than three.

These moments have physical significance and can be related to the various two-phase flow
regimes. The variance of the void distribution should be small in bubbly and annular flows.
These flows should also be leptokurtic and possess large (positive or negative) skewness. Slug
flow void distributions, on the contrary, should have a large variance but small skewness. The
slug flow void distribution is normally platykurtic. Flow regime identification should thus be
possible with these moments.

Calculation of the moments of a discrete distribution is straight-forward. The mean is the sum
of the products of the possible void fractions ¢; and their associated probabilities p;

Mz

a =

app;. [1]

i=1

Higher moments about the mean M, are calculated in similar fashion,

N
M, = Zl (a;—a)'p: (2]

The coefficients of skewness Cy, and kurtosis Cy, are formed by dividing the skewness M; and
kurtosis M, by the variance M, raised to the appropriate power. That is,

M,

Cu = 3.5 3]
Cu= g% [4

Later reference to skewness and kurtosis should be taken to mean the coefficient of skewness
or the coefficient of kurtosis.

These moments can be calculated from the measured chordal void fraction, and can be used
to infer information on flow regime. The next section will be concerned with the technique
actually used at RPI to measure the instantaneous chordal-average void fraction.
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2. DESIGN OF THE EXPERIMENT AND INSTRUMENTATION

2.1 Technique

Many techniques are available for void fraction measurement (Hsu 1977, Lahey 1978).
X-ray attenuation was selected in this study to provide the statistical data required for the
calculation of the PDF and PSD. The technique developed provided the fast response and
accuracy necessary.

Several design criteria were incorporated into the X-ray system developed at RPI for
chordal-average void measurement.

(1) Relative chordal-average (along the test section diameter) void fraction error, Aa/a, of

less than five percent in one millisecond, for the lowest void fraction of interest.

(2) Test and reference beams from the same photon source, to reduce common mode noise.

(3) Analog linearization of the void signal before digitization, to eliminate dynamic bias.

(4) DC excitation of the X-ray tube’s filament for photon output stability.

(5) Mobility so that a conduit could be scanned laterally and vertically.

A system based on the above criteria can accurately measure the instantaneous chordal-
average void fraction and provide data for the formation of the PDF and PSD.

2.2 Dual Beam X-Ray System
Monoenergetic radiation attenuation follows the well known relationship known as Beer’s
Law.

I = I exp(— ax) [5]

where I, is the photon intensity incident on the test section (photon/cm’s) and I(x) is the
intensity at distance x into the media (photons/cm®s). The two-phase attenuation coefficient (&)
can be expressed as,

X = peXe + ppXp (6]

where ug is the vapor attenuation coefficient (cm™') and y, is the liquid attenuation coefficient.
This expression can be substituted into [5] to yield,

I =Iyexp—(ueXc + purxp). (7]

The attenuation coefficient of the vapor, ug, is usually much less than the attenuation
coefficient for the liquid phase. Thus, for the (atmospheric) conditions of the experiment
reported herein, [7] reduces to,

I'=Iyexp(—prx.) (8]

Dual beam systems (Smith 1971, Jones & Zuber 1975) use a reference beam to compensate
for variations in X-ray tube photon output. This type of set-up uses two beams from the same
source: one passing through the two-phase mixture, and the other passing through a reference

attenuator.
Previous work (Lahey et al. 1978) has shown that the instantaneous chordal-average void

fraction « is given by a linearized expression of the form,

R(t)- R,

Ro—R, [9a]

a(t) =
where

RO = In{V¥/V¥) [9b]
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The X-ray system employed in this experiment is shown schematically in figure 2. It features
full-wave rectification and high voltage filtering to insure a stable high voltage supply.
Moreover, the X-ray tube filament is excited by a battery current source to insure photon
emission stability.

Analog signal processing for this system, which follows the analysis of Lahey ef al. (1978), is
shown schematically in figure 3. The current output from the test and reference photomul-
tipliers were fed, via shielded cables, to an analog devices model 756-P logarithmic ratio
module. This solid state device was temperature compensated and can cover a dynamic range
of 7 decades with an error less than +1%. A DC bias voltage was applied to the reference signal
to improve the signal-to-noise ratio (Lahey et al. 1978).

Chordal-average X-ray measurements were made in low (i.e. atmospheric) pressure
air/water flow. A 2.54cm dia. vertical plexiglass tube contained the two-phase mixture and
allowed for direct observation. A more detailed description of the test loop and X-ray system
has been given by Vince & Lahey (1980).

2.3 Error analysis
Two types of errors are normally associated with void fraction measurements; static and
dynamic. Static error is due to the geometry and count statistics associated with the measure-
ment. Dynamic error may be caused by improper averaging of the phenomena under study.
2.3.1 Static error. The static error may be calculated from geometric and counting statistics
associated with the X-ray system. Malaviya & Lahey (1980) have developed an expression for
the static error associated with a dual beam X-ray system.

2
2 4(32) (1-a + o) expl2p T + 1.C + alpo ~ r)C)
(Aa) - RST “0]

a Agbelop; CPa’

where A, is the area of the detector which is intersected by the photon beam, Rgp is the
distance from source to detector (cm) Ry; is the distance from the source to the test section (cm)
6 is the integration time u,, is the attenuation coefficient of the test section walls (cm™) C is
the chord length through the two phase mixture and T is the wall thickness of the conduit. This
expression can be evaluated at each chordal position to yield the relative chordal-average void
fraction error at that location. In this work the following parameters were utilized in the
evaluation of the static error: 6 =1 ms, e =0.70 and I, = 4.5 X 10° photons/cm®-s.

Figure 4 shows the relative error as a function of chordal void fraction, associated with each
chordal position, indicated in figure 5. The curves shown in figure 4 account for the variation in
conduit wall thickness and pathlength at the various chordal positions for the 2.54 cm dia,
plexiglass test section used in the RPI study. The centerline chord produces the most accurate
results since the largest portion of the X-ray beam is attenuated in the two-phase mixture. In
contrast, the wall chord contains the largest relative error.

The absolute error can be calculated by multiplying the relative error by the associated
chordal-average void fraction. These results are illustrated in figure 6 for a sample time (8) of
I'ms. It can be seen that the design and operating conditions of this X-ray system produce
measurements with acceptably small static error.

2.3.2 Dynamic error. Dynamic error results because the logarithm of the time-average value of
the measurement is not equal to the time-average of the logarithm of the measurement. Most
photon densitometers operate in the pulse mode; that is, they count single events. The relatively
small source strength associated with gamma ray devices make this type of signal processing
necessary.

X-ray systems yield very high equivalent source strength. So high in fact that one can work
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in the current mode, and thus the logarithms of the analog signal can be taken electronicallyt
before data processing. Hence the measurement signal is linearized prior to time-averaging. Due
to this linearization, dynamic error was not present in the X-ray measurements.

3. PDF AND PSD RESULTS
Comprehensive air/water two-phase flow chordal-average void fraction data were taken
using the X-ray system. This data included zero and non-zero liquid flow cases. In all, forty-nine
sets of data were acquired and processed. Each set consisted of six chordal measurements,

1The Analog Devices Model 756-P logarithmic ratio module utilized has a minimum frequency response of 0-1kHz,
making it more than adequate to resolve the phenomena of interest in this study.
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including one along the diameter and one adjacent to the tube wall. The flow was found to be
axisymmetric; thus data was only taken on one side of the tube. A plot of the air/water
superficial velocities measured are shown in figure 7. The flow regimes shown here were
determined visually. It can be noted that the data is concentrated in the regions in which flow
regime transition takes place. For ease of display, all data taken at zero liquid superficial
velocity has been placed at one-thousandth of a meter per second.

Each measurement consisted of 12,800 instantaneous void fraction readings at each chordal

location. These data were collected at a rate of two hundred samples per second. A sixty-four
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Figure 7. A flow regime map based on visual observation of the two-phase fiow.
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second sample time was determined to be large enough to insure a statistically stationary
chordal-average void fraction for all flow regimes tested.

The normalized PDF were formed from all the data points acquired in each chordal void
measurement. This histogram was further analyzed by computing the various moments asso-
ciated with it.

The first 1024 points were used in forming the PSD because of the limitations on the data
processing computer’s central memory. A sampling frequency of two hundred per second
results in a Nyquist frequency of one hundred hertz (i.e. one-half the sampling rate). To
minimize aliasing errors, the break frequency of the four pole active low pass filter was set at
100 hz. This data set size, and the associated Nyquist frequency, set the frequency resolution at
slightly greater than one-half hertz. The moments of the PSD were calculated in a fashion
identical to the PDF. Different parts of the full data set were ensemble averaged to insure that
the first 1024 point set produced a representative power spectrum.

The PSDs were normalized using the method suggested by Bendat & Piersol (1971),

PSD(f) & 7 |Re(f) + (Im(7)? (1]

where, T, is the record length of data, f is the frequency (Hs), Re(f) is the real part of the PSD
and Im(f) is the imaginary part of the PSD as a function of the frequency.

The factor of 2 is applied because the data is strictly real. This normalization yields what is
referred to on the following figures as the “‘normalized amplitude”.

The effects of Hamming and Hanning windows (Blackman & Tukey 1958) were also
investigated. Application of a data window changed the total amplitude of the spectrum, but did
not change its shape. Thus, no windowing was performed on the data presented herein.

The PDF shown in figure 8 was measured for zero void fraction (i.e. liquid-only conditions).
The PDF appears as a sharp spike at zero void. As in previous experiments of this type (Jones
& Zuber 1975), this distribution is a normal distribution. Since the X-ray system developed at
RPI had a very stable photon output, the observed standard deviation for all liquid conditions
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Figure 8. The PDF for single phase liquid flow i.e. void fraction equal zero.
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was only 0.16 percent. This is considerably less than the 2.2 percent measured by Jones &
Zuber (1975) at zero void fraction.

3.1 Visual data

Photographs and visual observation were taken of each two-phase condition studied. At low
liquid velocity, visual flow regime identification is easily made for bubbly or slug flow. Higher
liquid velocity makes visual flow regime distinction more difficult.

Churn-turbulent flow is relatively easy to observe, however, the transition from slug to
churn-turbulent flow is very difficult to detect visually.

The conclusions drawn from visual observation can differ, depending on the observer.
Indeed, visual methods are quite subjective and accurate conclusions regarding flow regime
boundaries cannot normally be made.

3.1.1 Centerline PDF and PSD distributions. Photographs of some of the two-phase mix-
tures studied are displayed with the diametric PDF and PSD. The diameter distributions were
selected because they are representative of the conditions prevailing in the entire pipe.

The PDF, PSD and two-phase mixture associated with an area-averaged void fraction of 13
percent and a liquid superficial velocity of 0.12 m/sec is illustrated in figure 9. A unimodal PDF,
typical of bubbly flow, is observed. A sharp peak is also observed at zero void fraction due to
the measurement associated with the liquid phase only. Jones & Zuber (1975) did not observe
this peak, apparently because of their collimations and because fluctuations in their X-ray
intensity limited resoluton.

The PSD shown in figure 9 is broadband and of low amplitude. Other liquid flow cases are
very similar except that the bandwidth increases with liquid velocity. This is expected since
bubbles move at a higher velocity as j; is increased.

For 26 percent area-averaged void fraction, the PDF, PSD and two-phase pictures are
shown in figures 10-14 for liquid superficial velocities of 0.0, 0.12, 0.25, 0.37, and 0.5 m/sec,
respectively. The PDF associated with zero liquid flow is very broad due to the presence of
Taylor bubbles. As found at lower void fraction, the onset of liquid flow reduces the breadth of
the PDF; this is shown in figure 11. The increasing air flow associated with an increasing liquid
flow, to maintain a constant area-average void fraction, promotes the transition to slug flow. A
very broad PDF is observed for a superficial velocity of 0.25 m/sec as shown in figure 12.
Ultimately, the increased liquid flow cannot suppress the transition to slug flow and the PDF
becomes bimodal. These results are clearly shown in figures 13 and 14.

The PSDs associated with this void fraction show an interesting trend. All PSDs for this
void fraction show characteristic peaks. As expected, the position of these peaks increase in
frequency with increasing liquid velocity. Some of the peaks are rather broad; especially those
shown in figures 13 and 14.

Jones & Zuber (1975) has previously attempted to discriminate between flow regimes by
looking at the number of modes in the PDF. The PDFs and photographs shown in figures 10-14
indicate that the transition from bubbly to slug flow in a circular conduit can be very gradual.
Thus discrimination based on the number of modes will be quite subjective. Jones & Zuber used a
2-dimensional conduit geometry which simplified data interpretation. The circular conduit
geometry used in this study indicates that the number of modes possessed by a PDF is not adequate
for flow regime identification. However, as will be discussed later, calculations of the moments can
provide an objective indicator.

Fully-developed slug flow is obvious in figure 15 for 41 percent area-averaged void fraction,
and a zero liquid superficial velocity. The PDF is bimodal, as expected, regardless of liquid
velocity.

The PSD also shows behavior characteristic of slug flow. That is, a sharp peak of large
magnitude is observed at low frequency. As expected, other data (not shown here) shows that
the PSD peak’s location moves to higher frequency as the liquid velocity is increased.
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Figure 9. A photograph (a), diameter PDF (b), and diameter PSD (c), for 13 percent area-averaged void
fraction, j; = 0.12 m/sec, j; = 0.045 m/sec.

Figures 16-20 illustrate the PDF, PSD and photographs for 68 area-averaged void fraction.
The liquid superficial velocities shown were 0.0, 0.12, 0.25, 0.37, and 0.5 m/sec, respectively.
The zero liquid flow case has a bimodal PDF and a single low frequency peak in the PSD.
Liquid flow increases cause unimodal PDF typical of annular flow. Note that the PSD is
broadened and reduced in amplitude, as would be expected in annular flow.

3.1.2 Moments of the probability density function (PDF) data.
3.1.2.1 Zero liquid flow data. A plot of the PDF variance as a functon of chordal-average void
fraction is indicated in figure 21. The curve is relatively smooth in the low void region where the
bubbly-slug transition is expected, (at 20-30 percent chordal-average void fraction). However, a
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Figure 10. A photograph (a), diameter PDF (b), and diameter PSD (c), for 26 percent aiea-averaged void
fraction, j, = 0.12 m/sec, j; = 0.075 m/sec.

slug-annular transition (at 70-80 percent chordal void fraction) is indicated since the variance
changes sharply for a slight increase in void fraction. The curves then tend towards zero as the
void fraction approaches either zero or one. This should be expected since the mean void
fraction would be centered about zero or unity for a liquid filled or empty pipe, respectively. A
discontinuity in the slope of the variance can be noted at about 0.4. This is interesting, since,
as will be shown later, this agrees with the slug-annular transition seen in visual observations.

Two-phase flow structure can be readily associated with variance. Liquid bridging across the
pipe is the primary physical difference between slug and annular flow. For slug flow, the
presence of a low void region, associated with the liquid slug and entrained bubbles, and a high
void region associated with the large spherical cap bubbles, produces considerable variance
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Figure 11. A photograph (a), diameter PDF (b), and diameter PSD (c), for 26 percent area-averaged void
fraction, j, = 0.12 m/sec, js = 0.111 m/sec.

from the mean. The disappearance of the liquid slug corresponds to a significant decrease in
variance and thus indicates transition to annular flow.

A plot of the third moment, the coefficient of skewness, as a function of chordal void
fraction is shown in figure 22. The skewness is relatively smooth in the bubbly-slug transition
region, further indicating the smoothness of this occurrence. A potential slug-annular transition
is indicated near 80 percent chordal-average void fraction. It can be seen that the skewness is
relatively independent of position except for the wall measurement.

The fourth moment, the coefficient of kurtosis, is plotted as a functon of chordal-average
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Figure 12. A photograph (a), diameter PDF (b), and diameter PSD (c), for 26 percent area-averaged void

fraction, j =0.25 m/sec, jg = 0.177 m/sec.

void fraction in figure 23. This parameter is also constant in the bubbly-slug transition region.

The kurtosis, like the lower moments, indicates flow regime transition near 80 percent
chordal-average void fraction. This response corresponds to a substantial increase in peaked-
ness caused by the disappearance of the liquid slugs. It should be noted that measurements
made near the wall, i.e., the ‘E’ and ‘F’ chords, do not exhibit the same trends as data acquired

elsewhere.

3.1.2.2 Non-zero liquid flow data. Any practical flow regime indicator should be independent of
fluid velocity. Thus, the data acquired at non-zero liquid flows was compared to that acquired at

zero liquid flow.

MF Vol. 8, No. 2—B
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Figure 13. A photograph (a), diameter PDF (b), and diameter PSD (c), for 26 percent area-averaged void fraction,
j =0.37 m/sec, jo =0.257 m/sec.

The variance was observed to be relatively constant in bubbly flow. The variance initially
decreases with the onset of liquid velocity. This occurrence indicates that the bubbly-slug
transition is surpressed by the liquid velocity. A further increase in liquid velocity cannot stop
the transition back to slug flow because of the corresponding increase in vapor flow rate
necessary to maintain constant area-averaged void fraction. This phenomena is shown in figure
24 at 26 percent area-averaged void fraction. Notice that all non-wall chords indicate similar
trends. Clearly, the bubbly-slug flow regime transition does not occur at constant void fraction,
however it was found that a variance of 0.04 also predicts the visually observed bubbly-slug
transition.
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Figure 14. A photograph (a), diameter PDF (b), and diameter PSD (c), for 26 percent area-averaged void fraction,
Jjr. =0.50 m/sec, jg = 0.329 m/sec.

Figure 25 illustrates the variance as a function of liquid superficial velocity at 68 percent
area-averaged void fraction. A monotonic decrease in variance is observed as the liquid
velocity increases. The large vapor flow rates associated with this void fraction tend to force
the liquid to the wall enhancing a slug-annular transition.

The shape of the skewness versus liquid superficial velocity graph is similar to the same
corresponding graph for the variance, however, the magnitude of the skewness does not change
in a fashion necessary to establish a precise bubbly-slug flow regime indicator. Th magnitude of
the skewness generally decreases with increasing void fraction, however, a transition from
bubbly to slug flow produces an increase in skewness. These two phenomena occur simul-
taneously and tend to offset each other.
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Figure 15. A photograph (a), diameter PDF (b), and diameter PSD (c), for 41 percent area-averaged void
fraction, j, = 0.0 m/sec, j; =0.184 m/sec.

Kurtosis, the fourth moment about the mean, is quite independent of liquid velocity and
correspondingly flow regime. The coefficient of kurtosis is invariant with respect to liquid
superficial velocity for area-averaged void fractions of 13, 20 and 26 percent. The magnitude of
the coefficient of kurtosis does change as a function of voidage and is relatively independent of
position. Thus a bubbly-slug flow regime indicator is not possible using the coefficient of
kurtosis.

In the slug flow regime, the coefficient of kurtosis again does not exhibit any dependence on

liquid superficial velocity. Moreover, the coefficient of kurtosis is independent of chordal
position.
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Figure 16. A photograph (a), diameter PDF (b), and diameter PSD (c), for 68 percent area-averaged void
fraction, j_ = 0.0 m/sec, j; =0.981 m/sec.

A further increase in void fraction results in considerable variation in the coefficient of
kurtosis as a function of chordal position. Superficial liquid velocity effects were also observed.
These trends are expected since the kurtosis is a measure of the distribution’s peakedness. Around
the slug-annular transition, the void distribution is more peaked for the chord along the diameter
than the one adjacent to the wall.

3.1.3 Power spectral density (PSD) data. Three types of power spectra were observed:

(1) A wide band, low amplitude spectrum, usually associated with bubbly flows.

(2) A low frequency peak of large amplitude, usually associated with the characteristic
frequency of slug flow.
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Figure 17. A photograph (a), diameter PDF (b), and diameter PSD (c), for 68 percent area-averaged void
fraction, j; =0.12m/sec, g = 1.67 m/sec.

(3) A medium width band with an amplitude spectrum corresponding to annular flow.
The band width of the bubbly flow spectrum will increase with liquid velocity since the shorter
void transit time corresponds to higher frequencies. Similarily, the PSD for slug flow shifts to
high frequency as the liquid superficial velocity is increased. Annular flow is composed of the
frequencies of the liquid film thickness variation and roll waves moving along the liquid film
[vapor interface, and thus produces a spectrum of medium width, which increases with liquid
velocity.

All moments associated with the PSD exhibit a strong dependence on superficial liquid
velocity. This characteristic is very undesirable for a flow regime indicator because any
correlation would require knowledge of the liquid superficial velocity. Void fraction measure-
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Figure 18. A photograph (a), diameter PDF (b), and diameter PSD (c), for 68 percent area-averaged void
fraction, j; =0.25 m/sec, j; = 2.67 m/sec.

ments are sufficiently difficult, the requirement of a simultaneous liquid velocity measurement
renders the use of PSD moments impractical. Moreover, only the variance of the PSD has
possibilities for a flow regime indicator. The skewness and kurtosis are essentially independent
of the flow regime. As a result, the moments of the PSD are not considered to be as valuable as
the moments of the PDF for flow regime identification.

3.2 Data consistency

Several verifications were performed to assure data accuracy. A statistically stationary and
ergotic process was shown to exist (Vince & Lahey 1980); thus, the moments computed from
the PSD and PDF are representative of the phenomena being measured.
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Figure 19. A photograph (a), diameter PDF (b), and diameter PSD (c), for 68 pecent area-averaged void
fraction, j, =0.37 m/sec, j; = 3.41 m/sec.

Another verification was obtained by comparing the global void fraction, determined from
simultaneous pressure drop measurements, with the integrated chordal X-ray measurements
(i.e. the area-average void fraction). Due to the low velocities studied, the frictional pressure
drop is very small. A differential pressure measurement will then produce an accurate estimate
of the global void fraction. An appropriate integration scheme was proposed previously by Pike
et al. (1965). The results are shown in figure 26. Considering that inherent fluctuation in system
pressure drop made an accurate monometer reading difficult (particularly for the slug flow regime),
the observed agreement is quite good.
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Figure 20. A photograph (a), diameter PDF (b), and diameter PSD (c), for 68 percent area-averaged void
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fraction, j; = 0.50 m/sec, jg = 4.24 m/sec.

3.3 Comparisons with other data

Zuber & Findlay (1965) have previously presented a correlation for the vapor phase velocity
and the mixture superficial velocity ((j)). They found that plotting data in the (j,)/(a) vs(j) plane
produces a straight line with a slope of C,, the void concentration parameter, and a y-intercept
of V,;, the drift velocity. It has been previously shown (Zuber & Findlay 1965) that the C,
parameter can range from 1.0 to 1.6, depending on the fluid system pressure and geometry, and
v,; can vary from 0.3 to 1.2 ft/sec. Our flow and void fraction data were combined to produce a
plot in the so called “Zuber-Findlay” plane. This graph, shown in figure 27, indicates that our
data is correlated by a C, of 1.29 and a V,; of 0.15 m/s. A least squares fit of the data produces a
correlation coefficient of 0.999 (i.c. near perfect correlation). Obviously, these values are well
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Figure 21. The PDF variance vs time average chordal void fraction for j_ = 0.0 m/sec.
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Figure 23. The PDF coefficient of kurtosis vs time average chordal void fraction for j_ = 0.00 m/sec.
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Figure 24. The PDF variance vs superficial liquid velocity at 26 percent area-averaged void fraction.
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Figure 27. The RPI X-ray data in the Zuber-Findlay (1965) plane.

within the ranges indicated by Zuber & Findlay (1965). Since reasonable agreement with similar
previous works, and independent measurements, was achieved, the X-ray data presented herein
is believed to be accurate.

3.4 Recommended flow regime indicator

The moments of the PDF and PSD associated with a variety of two-phase conditions were
calculated. Even though flow regime information is evident in many of the moments calculated,
the PDF variance, or second moment about the mean, appears to be the best flow regime
indicator. For the pipe flow data analyzed, a variance greater than 0.04 indicated slug flow.
Smaller variances indicate a bubbly or annular flow regime, depending on the mean void
fraction. This flow regime indicator is not strongly dependent on the superficial liquid velocity,
and is fairly independent of chordal measurement position, thus it appears to be a good choice.

The flow regime map determined using this criterion is shown in figure 28. Comparing this
figure with the flow regime boundaries indicated in figure 6 (developed from direct visual
observations), we see that the 0.04 variance criterion proposed does a good job.

This flow regime map disagrees somewhat with other maps. Figure 29 compares the results
shown in figure 28 with the map suggested by Taitel & Dukler (1980). It can be seen that the
bubbly-slug (i.e. churn) transition boundary is in good agreement however the slug-annular
transition is off significantly. This may be fortuitous since their flow regime criteria for the
bubbly-slug flow regime transition is based on a constant area-averaged void fraction, a trend
which was not observed in this study. Moreover, their slug-annular transition criterion of
15 m/sec is not supported by our data.

As shown in figure 30, our 0.4 variance flow regime indicator produces reasonable agreement
with Griffith & Wallis (1961) map for the slug-annular transition. It also agrees with the Griffith and
Wallis fiow regime map for data acquired at zero liquid flow for the bubbly-slug transition.
However a significant discrepancy exists at the bubbly-slug transition for non-zero liquid flow.

Duns & Ros (1963) also proposed a flow regime map. The variance criterion proposed herein
disagrees with this map as shown in figure 31. Duns & Ros predict the existence of bubbly flow
when slug flow was visually observed and indicated by the 0.04 variance criterion. Likewise,
Duns & Ros predict slug flow when annular flow was observed and predicted by our criterion.

The map proposed by Govier & Aziz (1972) is in better agreement but, as shown in figure 32,
still differs somewhat from the 0.04 variance criterion prediction for the bubbly-slug transition.
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Figure 29. A comparison of the RPI X-ray data and Taitel & Dukler (1980) correlations.

It should be noted that the maps suggested by earlier researchers do not completely agree
amongst themselves, thus it is no surprise that our data does not agree with all of them. Indeed,
this disagreement is a reflection of the subjective nature of previous investigators’ flow regime
maps, and clearly indicates the need for an objective criterion.

It should be stressed that our data base is limited to low pressure air/water flow in circular
conduits, and thus the generality of using a constant PDF variance (i.e. 0.04) as a flow regime
transition criterion needs further verification. Nevertheless, it appears to be a very promising

criterion.
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Figure 31. A comparison of the RPI X-ray data and the flow regime map proposed by Duns & Ros (1963).

4. SUMMARY AND RECOMMENDATIONS
4.1 Flow regime identification
Forty-nine two-phase flows were studied with a dual beam X-ray system. The chordal void
fraction was measured at six chordal locations across the pipe for each low pressure air/water
flow. The probability density function (PDF) and power spectral density (PSD) function, and
their first four moments, were calculated for each chordal position.
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Figure 32. A comparison of the RPI X-ray data and the flow regime map proposed by Govier & Aziz
(1972).

An objective flow regime indicator was developed from the first four moments associated
with the PDF and PSD. The variance of the PDF is recommended. This moment responded to
the observed changes in fiow regime and was found to be independent of liquid superficial
velocity. For the conditions tested in this study the level of variance which indicated the
bubbly-slug and slug-annular flow regime transition was found to be 0.04, independent of flow
rate. Clearly, more work needs to be done to further investigate this technique in complex
geometries, and at higher pressures. Nevertheless, the technique appears quite promising for
further development.

The moments of the PSD need to be correlated with liquid superficial velocity in order to be
useful. This would require the simultaneous measurement of the liquid superficial velocity.
Thus the PSD, and its moments, are not recommended as objective flow regime indicators.

Finally, it was observed that the commonly used flow regime transition criterion of a
constant void was inadequate.
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NOMENCLATURE

A, detector area intersected by photon beam, cm?
C chord length through two-phase mixture, cm
Cu.  the coefficient of skewness
Cy, the coefficient of kurtosis
f frequency, Hertz
Im(f, T,) imaginary part of power spectral density as a function of frequency and record
length, 57!
I, photon intensity incident on test section, photons/cm?-s
I(x) unattenuated intensity at distance x into the media, photons/cm*-s
M, variance
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M, skewness

M, kurtosis

M, nth moment about the mean

;  probability of ith void fraction
PSD(f) normalized amplitude of power spectral density as a function of frequency, s
Re(f, T,) real part of power spectral density as a function of frequency and record length, s~

R; output voltage corresponding to all vapor (a = 1)

R; output voltage corresponding to all liquid (@ = 0)
Rsp source to detector distance, cm
Rgr  source to test section distance, cm

1

R(t) A1In(V*(V*)) output voltage corresponding to instantaneous chordal void fraction

T wall thickness of conduit, cm
T, record length, s
V* signal (voltage) from the X-ray beam going through the reference attenuation
V*% signal (voltage) from the X-ray beam going through the test section
x thickness of attenuating media, cm
X; vapor path length, cm
x. liquid path length, cm

Greek symbols
a chordal-average void fraction
a; the ith void fraction
€ detector efficiency
# integration time
& average attenuation coefficient for two-phase mixture, cm™
i vapor attenuation coefficient, cm™
w; liquid attenuation coefficient, cm™
ww attenuation coefficient of test section walls, cm™

1
1
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